Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.03.498624

ABSTRACT

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonist of C5aR1 could be useful for COVID-19 treatment. Keywords: COVID-19, C5aR1, C5a, SARS-CoV-2, Myeloid cells, Neutrophils, NETs


Subject(s)
Multiple Organ Failure , Respiratory Distress Syndrome , Infections , Death , COVID-19 , Influenza, Human
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.06.20169573

ABSTRACT

Introduction. Neutrophilia and high levels of proinflammatory cytokines and other mediators of inflammation are common finds in patients with severe acute respiratory syndrome due to COVID-19. By its action on leukocytes, we propose colchicine as an intervention worthy of being tested. Objective. To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. Methods. We present the interim analysis of a single-center randomized, double-blinded, placebo controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 38 patients allocated 1:1 from April 11 to July 06, 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The first dose was 1.0 mg whether body weight was [≥] 80 kg. Endpoints. The primary endpoints were the need for supplemental oxygen; time of hospitalization; need for admission and length of stay in intensive care units; and death rate and causes of mortality. As secondary endpoints, we assessed: serum C-reactive protein, serum Lactate dehydrogenase and relation neutrophil to lymphocyte of peripheral blood samples from day zero to day 7; the number, type, and severity of adverse events; frequency of interruption of the study protocol due to adverse events; and frequency of QT interval above 450 ms. Results. Thirty-five patients (18 for Placebo and 17 for Colchicine) completed the study. Both groups were comparable in terms of demographic, clinical and laboratory data at baseline. Median (and interquartile range) time of need for supplemental oxygen was 3.0 (1.5-6.5) days for the Colchicine group and 7.0 (3.0-8.5) days for Placebo group (p = 0.02). Median (IQR) time of hospitalization was 6.0 (4.0-8.5) days for the Colchicine group and 8.5 (5.5-11.0) days for Placebo group (p = 0.03). At day 2, 53% vs 83% of patients maintained the need for supplemental oxygen, while at day 7 the values were 6% vs 39%, in the Colchicine and Placebo groups, respectively (log rank; p = 0.01). Hospitalization was maintained for 53% vs 78% of patients at day 5 and 6% vs 17% at day 10, for the Colchicine and Placebo groups, respectively (log rank; p = 0.01). One patient per group needed admission to ICU. No recruited patient died. At day 4, patients of Colchicine group presented significant reduction of serum C-reactive protein compared to baseline (p < 0.001). The majority of adverse events were mild and did not lead to patient withdrawal. Diarrhea was more frequent in the Colchicine group (p = 0.17). Cardiac adverse events were absent. Discussion. The use of colchicine reduced the length of supplemental oxygen therapy and the length of hospitalization. Clinical improvement was in parallel with a reduction on serum levels of C-reactive protein. The drug was safe and well tolerated. Colchicine may be considered a beneficial and not expensive option for COVID-19 treatment. Clinical trials with larger numbers of patients should be conducted to further evaluate the efficacy and safety of colchicine as an adjunctive therapy for hospitalized patients with moderate to severe COVID-19.


Subject(s)
Diarrhea , COVID-19 , Inflammation , Respiratory Insufficiency
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20125823

ABSTRACT

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to respiratory failure. These patients also develop cytokine storm syndrome, and organ dysfunctions, which is a clinical picture that resembles sepsis. Considering that neutrophil extracellular traps (NETs) have been described as an important factors of tissue damage in sepsis, we investigated whether NETs would be produced in COVID-19 patients and participate in the lung tissue damage. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and respective healthy controls were enrolled. NETs concentration was assessed by MPO-DNA PicoGreen assay or by confocal immunofluorescence. The cytotoxic effect of SARS-CoV-2-induced NETs was analyzed in human epithelial lung cells (A549 cells). The concentration of NETs was augmented in plasma and tracheal aspirate from COVID-19 patients and their neutrophils spontaneously released higher levels of NETs. NETs were also found in the lung tissue specimens from autopsies of COVID-19 patients. Notably, viable SARS-CoV-2 can directly induce in vitro release of NETs by healthy neutrophils in a PAD-4-dependent manner. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represent a potential therapeutic target for COVID-19.


Subject(s)
Respiratory Distress Syndrome , Sepsis , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL